
Introduction to the matiming package

Valeriy Zakamulin*

This revision: September 7, 2017

Contents

1 Introduction 2

2 Data 2

3 The organization of the functions supplied by the package 3

4 Functions that compute moving averages 3

5 Functions that simulate the returns to different trading rules and merge the
results of simulations 4

6 Functions that compute the performance of trading rules 7

7 Functions that perform back- and forward tests of trading rules 7
7.1 Finding the best trading rules in a back test . 7
7.2 Simulating the returns to the out-of-sample trading strategy 11
7.3 Outperformance test . 16

8 Function that report the descriptive statistics of trading rules and plot the
results 19
8.1 Descriptive statistics, cumulative returns, and drawdowns 19
8.2 Rolling outperformance plots . 22

References 27

*School of Business and Law, University of Agder, Service Box 422, 4604 Kristiansand, Norway, E-mail:
Valeri.Zakamouline@uia.no, Website: http://vzakamulin.weebly.com/

1

1 Introduction

The matiming package contains functions to compute moving averages, simulate moving aver-

age trading strategies, and to perform back-tests and forward tests of these strategies. For the

sake of convenience, the package includes the monthly and daily data on the returns (both cap-

ital gain and total) of the Standard and Poor’s Composite index and the Dow Jones Industrial

Average index, as well as the risk-free rate of returns.

The package is provided AS IS, without any implied warranty as to its accuracy or suitabil-

ity. The main reference book that describes the computation of moving averages, moving av-

erage trading rules, performance measurement, and methodology of back- and forward-testing

is (2017) “Market Timing with Moving Averages: The Anatomy and Performance

of Trading Rules” by Valeriy Zakamulin.

2 Data

The following datasets are provided by the package:

Object name Index Data frequency Start date End date

sp500.monthly S&P Composite monthly January 1857 December 2015

sp500.daily S&P Composite daily July 1926 December 2015

djia.monthly Dow Jones monthly July 1926 December 2015

djia.daily Dow Jones daily July 1926 December 2015

Figure 1: The description of the datasets

All datasets represent zoo time-series objects with the following data columns:

CAP: Capital gain return

TOT: Total return

RF: Risk-free rate of return

In all datasets, the dates are stored in Date format "%Y-%m-%d".

For example, to access the dates and the data in dataset djia.monthly, one can use the

following command sequence

2

library(zoo)

data <- djia.monthly

dates <- index(data)

data <- coredata(data)

capret <- data[,"CAP"]

totret <- data[,"TOT"]

rfret <- data[,"RF"]

As a result, object dates is the vector of dates, objects capret, totret, and rfret are the

vectors of capital gain returns, total returns, and the risk-free rates of return respectively.

3 The organization of the functions supplied by the package

All functions supplied by the package can be divided into the following families of functions:

� Functions that compute different moving averages;

� Functions that simulate the returns to different trading strategies and merge the results

of simulations;

� Functions that compute the performance of trading strategies;

� Functions that perform back- and forward tests of trading strategies;

� Function that report the descriptive statistics of trading rules and plot the results

4 Functions that compute moving averages

The following functions are supplied:

SMA : Computes the Simple Moving Average

LMA : Computes the Linear Moving Average

EMA : Computes the (infinite) Exponential Moving Average

DMA : Computes the Double Exponential Moving Average (see Mulloy (1994))

HMA : Computes the Hull Moving Average (see Hull (2005))

ZMA : Computes the Zero Lag Exponential Moving Average (see Ehlers and Way (2010))

3

All functions take two arguments: a vector of prices and a scalar that defines the size of

the averaging window.1 Functions SMA, LMA, and EMA are implemented in C and use recursive

algorithms; hence they compute moving averages very fast. The other moving averages are

computed using SMA, LMA, and EMA functions.

An example of using SMA function

sma <- SMA(prices, 10)

However, there is no necessity to call these functions directly; only pointers to this functions

are provided as arguments in other functions. This family of functions can be extended by

adding your own functions that compute other types of moving averages.

5 Functions that simulate the returns to different trading rules

and merge the results of simulations

To simulate the returns to different trading rules, the following functions are supplied:

sim.mom.strategy : Simulate the returns to the Momentum (MOM) strategy

sim.mac.strategy : Simulate the returns to the Moving Average Crossover (MAC) strategy

sim.cdir.strategy : Simulate the returns to the Moving Average Change of Direction (CDIR)

strategy

sim.macd.strategy : Simulate the returns to the Moving Average Convergence/Divergence

(MACD) strategy

sim.mae.strategy : Simulate the returns to the Moving Average Envelope (MAE) strategy

The usage of these functions:

sim.mom.strategy(totret, rfret, dates, capret=NULL, tc=0, shorts = FALSE,

winsize=200)

sim.mac.strategy(totret, rfret, dates, capret=NULL, tc=0, shorts = FALSE,

fast=50, slow=200, FUN=SMA)

1For EMA, the second argument is the length of the averaging window in SMA that has the same average
lag time as EMA.

4

sim.cdir.strategy(totret, rfret, dates, capret=NULL, tc=0, shorts = FALSE,

winsize=200, FUN=SMA)

sim.macd.strategy(totret, rfret, dates, capret=NULL, tc=0, shorts = FALSE,

fast=12, slow=26, final=9, FUN=EMA)

sim.mae.strategy(totret, rfret, dates, capret=NULL, tc=0, shorts = FALSE,

winsize=200, percentage=1, FUN=SMA)

Most arguments in these functions are basically the same:

totret : the vector of total returns to the passive strategy

rfret : the vector of risk-free rates of return

dates : the vector of dates

capret : the vector of capital gain returns to the passive strategy

tc : a scalar that defines the amount of one-way proportional transaction costs. The trans-

action costs are in decimals, not in percentages. For example, tc=0.001 defines 0.1%

one-way transaction costs;

shorts : a logical variable. If shorts=FALSE, a Sell trading signal mandates selling the finan-

cial asset and moving to cash. If shorts=TRUE, a Sell trading signal mandates selling

short the financial asset.

FUN : a function that defines the type of a moving average used to compute the trading indi-

cator

The vector of capital gain returns is used to construct the time-series of prices. These prices

are used in the computation of technical trading indicators. This methodology agrees with the

common practice that trading signals are computed using prices not adjusted for dividends.

In cases where the capital gain returns are not available (if capret=NULL) the time-series of

prices is computed using the total returns. Hence, in this case (when capret=NULL) trading

signals are computed using prices adjusted for dividends.

The argument winsize (a vector or a scalar) defines the size of the averaging window in

MOM, MAE, and CDIR trading rules. fast and slow (each of them can be a vector or a

scalar) define the sizes of the shorter (fast) and longer (slow) averaging windows in MAC and

5

MACD rules. The argument final (a vector or a scalar) defines the size of the averaging

window for final smoothing in MACD rule. Finally, percentage (a vector or a scalar) defines

the envelope percentage in MAE rule.

Each function returns an object (say, results) that contains the description of each simulated

strategy and the simulated returns. For example, if winsize=6 in MOM strategy, then the

function simulates only one strategy, MOM(6). However, if winsize=2:10, then the function

simulates 9 trading strategies (MOM(2), MOM(3), . . . , MOM(10)).

All functions perform a check of validity (of the set) of arguments that define the sizes

of the averaging windows. In MOM, MAE, and CDIR rules, functions perform a check that

winsize>1. Similarly, in MACD rule the function perform a check that final>1. In MAC

and MACD rules, functions perform a check that slow>fast. For example, one can define the

following vectors and simulate the returns to the MAC strategy

fast <- 1:3

slow <- 2:4

res <- sim.mac.strategy(totret=totret, rfret=rfret, dates=dates,

capret=capret, tc=tc, shorts=shorts, fast=fast, slow=slow, FUN=SMA)

Note that both vectors (fast and slow) have 3 elements, hence there are 9 possible com-

binations of fast[i] and slow[j]. However, not all of these combinations are valid. The

function simulates only 6 strategies (MAC(1,2), MAC(1,3), MAC(1,4), MAC(2,3), MAC(2,4),

MAC(3,4)) for which fast[i] < slow[j].

The result returned by each function serves as an argument in functions that perform either

the back- or forward test of different trading rules. For example, one can simulate a set of

MOM(n) rules (for different values of n) and then test whether the MOM rule outperforms the

buy-and-hold rule in an out-of-sample test. In this case a trader has only one set of available

rules. However, in reality a trader may consider several sets of trading rules at the same time.

For instance, in addition to the set of MOM rules a trader can consider a set of MAC rules. In

this case, at each time t a trader finds the best trading rule in a back test among all available

MOM and MAC rules (this combination of two or several rules is called COMBI strategy in

the book “Market Timing with Moving Averages”). In order to test whether MOM and MAC

rules outperform the buy-and-hold rule in an out-of-sample test, a trader needs to simulate

the returns to both the rules and then to merge the results of these simulations. Merging the

6

results of simulation is performed by sim.resuls.merge function.

An example of a code that simulates the returns to different MAC and MOM strategies

and merges the results of simulations is given below:

fast <- 1:5

slow <- 2:15

winsize <- 2:10

res1 <- sim.mac.strategy(totret=totret, rfret=rfret, dates=dates,

capret=capret, tc=tc, shorts=shorts, fast=fast, slow=slow, FUN=SMA)

res2 <- sim.mom.strategy(totret=totret, rfret=rfret, dates=dates,

capret=capret, tc=tc, shorts=shorts, winsize=winsize)

results <- sim.results.merge(res1, res2)

6 Functions that compute the performance of trading rules

Three following functions are supplied by the package:

Excret : Mean excess returns

Sharpe : Sharpe ratio

Sortino : Sortino ratio

The sole argument in all these functions is the vector of excess returns (strategy’s returns

in excess of the risk-free rates of return). An example of using Sharpe function

SR <- Sharpe(exret)

However, there is no necessity to call these functions directly; only pointers to this functions

are provided as arguments in other functions. This family of functions can be extended by

adding your own functions that compute other performance measures using excess returns.

7 Functions that perform back- and forward tests of trading

rules

7.1 Finding the best trading rules in a back test

Function back.test finds the optimal trading strategies in a back-test. The usage of this

function

7

back.test(results, start.date, end.date, n.first=10, include.bh=FALSE, FUN=Sharpe)

where

results : the results of simulation of a trading strategy or multiple trading strategies

start.date : the start of the in-sample period

end.date : the end of the in-sample period

n.first : the (maximum) number of the best performing strategies in the returned object

include.bh : a logical value indicating whether to consider the Buy-and-Hold (bh) strategy

in addition to the moving average strategies

FUN : the function that computes the performance of a trading strategy

This function performs the following. Given a set of simulated trading rules (in results

argument) and a specific historical period (from start.date to end.date), the function finds

and returns the trading rules with the best performance. The number of best trading rules

is limited from above by argument n.first (a scalar). The function that computes the per-

formance measure is defined by argument FUN. In principle, no one moving average strategy

might outperform the buy-and-hold strategy over some specific historical period. Argument

include.bh=TRUE allows one to consider the buy-and-hold strategy as a strategy with poten-

tially one of the best performing strategies in a given historical period.

More formally, object results contains the returns to each simulated market timing rule

over the full historical sample from time 0 till time T . Assume that there are totally n simulated

trading rules. Denote by (xi0, x
i
1, x

i
2, . . . , x

i
T) the excess returns to trading rule number i. For

each trading rule i ∈ [1, n], this function measures the performance over the period from time

tstart ≥ 0 to time tend ≤ T :

Performance strategy i = PM(xistart, x
i
start+1, x

i
start+2, . . . , x

i
end),

where PM(·) is a function that computes the performance (either Excret, Sharpe, or Sortino).

Then the function sorts all trading rules in descending order from the best performing rule

8

to the worst performing rule, and finally returns the description of the first n.first best

performing rules.

The following program simulates a set of MAC trading strategies and finds the first 10

best strategies (using the Sortino ratio) over January 1990 to December 2015. Function

best.is.strategies reports the best strategies and plots their cumulate returns.

> rm(list=ls(all=TRUE))

> library(matiming)

> library(xtable)

> library(zoo)

> # access the data

> data <- sp500.monthly

> dates <- index(data)

> data <- coredata(data)

> capret <- data[,"CAP"]

> totret <- data[,"TOT"]

> rfret <- data[,"RF"]

> # simulate the trading strategies

> tc <- 0.0025

> fast <- 1:5

> slow <- 2:15

> shorts <- FALSE

> results <- sim.mac.strategy(totret=totret, rfret=rfret, dates=dates,

+ capret=capret, tc=tc, shorts=shorts,

+ fast=fast, slow=slow, FUN=SMA)

> # perform the back-test

> start.date <- as.Date("1990-01-01", format="%Y-%m-%d")

> end.date <- as.Date("2015-12-31", format="%Y-%m-%d")

> include.bh <- TRUE

> n.first <- 10

> res <- back.test(results, start.date=start.date, end.date=end.date,

9

+ n.first=n.first, include.bh=include.bh, FUN=Sortino)

> # report and plot the results

> df <- best.is.strategies(res, to.annual=sqrt(12), plot.results=TRUE)

> xtab <- xtable(df, digits=3)

1990 1995 2000 2005 2010 2015

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Lo
g

cu
m

ul
at

iv
e

re
tu

rn

B&H
SMAC(2,12)
SMAC(2,10)
SMAC(2,11)
P−SMA(12)
P−SMA(9)
P−SMA(13)
SMAC(2,15)
P−SMA(10)
P−SMA(15)
SMAC(5,15)

> print(xtab, include.rownames=FALSE)

Rank Rule Performance

1 SMAC(2,12) 1.089

2 SMAC(2,10) 1.079

3 SMAC(2,11) 1.072

4 P-SMA(12) 1.036

5 P-SMA(9) 1.032

6 P-SMA(13) 1.022

7 SMAC(2,15) 0.992

8 P-SMA(10) 0.990

9 P-SMA(15) 0.987

10 SMAC(5,15) 0.972

B&H() 0.699

10

7.2 Simulating the returns to the out-of-sample trading strategy

Function forward.test simulates the returns to the out-of-sample trading strategy. The usage

of this function:

forward.test(results, start.date, end.is.date, end.oos.date,

refit.every=1, rolling=FALSE, include.bh=FALSE, FUN=Sharpe)

where

results : the results of simulation of a trading strategy or multiple trading strategies

start.date : the start of the in-sample period

end.is.date : the end of the initial in-sample period

end.oos.date : the end of the out-of-sample period

refit.every : this parameter determines how often the best trading strategy in a back test

is determined

rolling : a logical value indicating whether to use the expanding (if FALSE) or rolling (if

TRUE) in-sample window

include.bh : a logical value indicating whether to consider the Buy-and-Hold (bh) strategy

in addition to the moving average strategies

FUN : the function that computes the performance of a trading strategy

In a forward test, the time t+ 1 return to the moving average strategy is defined using the

trading signal of the best performing strategy till time t. That is, the trading signal for time

t + 1 is determined using only the information available at time t.

Before simulating out-of-sample returns to a trading strategy, the returns to a set of trading

rules are simulated from time 0 till time T . To perform a forward test, one selects a period

from time tstart (defined by start.date) till time tend (defined by end.oos.date). This period

is split into two segments: the initial in-sample period from time tstart till time tsplit (defined

by end.is.date) and the out-of-sample period from time tsplit + 1 till time tend.

11

To generate the trading signal at time tsplit,
2 for each trading rule i ∈ [1, n], the function

measures the performance over the period from time tstart to time tsplit:

Performance strategy i = PM(xistart, x
i
start+1, x

i
start+2, . . . , x

i
split),

where PM(·) is a function that computes the performance and (xistart, x
i
start+1, x

i
start+2, . . . , x

i
split)

are the excess returns to trading rule i in the initial in-sample period. Then the trading signal

is generated by the best trading rule (the rule with the highest performance) in the initial

in-sample period.

If refit.every>1, the function uses the same trading rule to generate the trading signal at

the subsequent times from time tsplit till time tsplit+refit.every-1. At time tsplit+refit.every

the function again finds the best trading strategy in the in-sample period. If rolling=FALSE,

the new in-sample period starts from time tstart to time tsplit+refit.every. Otherwise, if

rolling=TRUE, the new in-sample period starts from time tstart+refit.every to time tsplit

+refit.every. In the former case, the length of the in-sample period increases. In the latter

case, the length of the in-sample period remains the same; this type of test is called “walk-

forward test”.

The following program first simulates a set of MAC trading strategies. Then the program

simulates the returns to the out-of-sample trading strategy over the period from January 1950

till December 2015. The initial in-sample period is from January 1928 till December 1949;

the function uses a rolling window scheme (because rolling=TRUE); the best trading rule in a

back test is determined every each 5 periods (because refit.every=5); the set of the trading

rules is augmented by the buy-and-hold strategy (because include.bh=TRUE); the performance

measure is the Sortino ratio (because FUN=Sortino).

> rm(list=ls(all=TRUE))

> library(matiming)

> library(zoo)

> library(xtable)

> # access the data

2Note that the trading signal is generated at the end of the period and, therefore, it defines the return over
the next period tsplit + 1.

12

> data <- sp500.monthly

> dates <- index(data)

> data <- coredata(data)

> capret <- data[,"CAP"]

> totret <- data[,"TOT"]

> rfret <- data[,"RF"]

> # simulate the trading strategies

> tc <- 0.0025

> fast <- 1:5

> slow <- 2:15

> shorts <- FALSE

> results <- sim.mac.strategy(totret=totret, rfret=rfret, dates=dates,

+ capret=capret, tc=tc, shorts=shorts, fast=fast, slow=slow, FUN=SMA)

> # simulate out-of-sample returns

> start.date <- as.Date("1928-01-01", format="%Y-%m-%d")

> end.is.date <- as.Date("1949-12-31", format="%Y-%m-%d")

> end.oos.date <- as.Date("2015-12-31", format="%Y-%m-%d")

> refit.every <- 5

> include.bh <- TRUE

> rolling <- TRUE

> res <- forward.test(results, start.date=start.date, end.is.date=end.is.date,

+ end.oos.date=end.oos.date, refit.every=refit.every, rolling=rolling,

+ include.bh=include.bh, FUN=Sortino)

> # report the descriptive statistics, the p-value of the test, and plot the results

> df <- descriptive.statistics(res, plot.results = TRUE)

> xtab <- xtable(df, digits=2)

13

1960 1980 2000

5
6

7
8

9
10

11

Lo
g

cu
m

ul
at

iv
e

re
tu

rn

Buy and Hold
Moving Average

1960 1980 2000

−
50

−
40

−
30

−
20

−
10

0

D
ra

w
do

w
n,

 %

Buy and Hold
Moving Average

> print(xtab)

BH MA

Mean returns % 11.64 10.49

Std. deviation % 14.43 11.03

Minimum return % -21.54 -21.54

Maximum return % 16.78 13.21

Skewness -0.41 -0.53

Kurtosis 1.71 4.67

Average drawdown % 5.98 4.50

Average max drawdown % 28.23 16.31

Maximum drawdown % 50.96 30.25

Sortino 0.75 0.85

P-value 0.27

Rolling 5-year Win % 51.57

Rolling 10-year Win % 60.33

Note that the result of the simulation of the returns to the out-of-sample trading strategy is

supposed to be processed by other functions supplied by the matiming package. For example,

the program above uses function descriptive.statistics to report the descriptive statistics,

the p-value of the test, and plot the results. However, if necessary, the user can access the

results of simulation and process them using own functions.

14

The object returned by function forward.test represents a list that contains the following

vectors (all of them are of the same length):

totret : a vector of total returns to the buy-and-hold strategy

actret : a vector of total returns to the out-of-sample trading strategy

rfret : a vector of risk-free rates of returns

dates : a vector of dates (from tsplit + 1 till tend)

Below is an example of a program that simulates the out-of-sample returns to a set of MAC

rules (this part is identical to that in the program above) and then processes the results of

simulations without using functions in the matiming package:

rm(list=ls(all=TRUE))

library(matiming)

library(zoo)

library(xtable)

access the data

data <- sp500.monthly

dates <- index(data)

data <- coredata(data)

capret <- data[,"CAP"]

totret <- data[,"TOT"]

rfret <- data[,"RF"]

simulate the trading strategies

tc <- 0.0025

fast <- 1:5

slow <- 2:15

shorts <- FALSE

results <- sim.mac.strategy(totret=totret, rfret=rfret, dates=dates,

capret=capret, tc=tc, shorts=shorts, fast=fast, slow=slow, FUN=SMA)

simulate out-of-sample returns

start.date <- as.Date("1928-01-01", format="%Y-%m-%d")

end.is.date <- as.Date("1949-12-31", format="%Y-%m-%d")

end.oos.date <- as.Date("2015-12-31", format="%Y-%m-%d")

refit.every <- 5

include.bh <- TRUE

rolling <- TRUE

res <- forward.test(results, start.date=start.date, end.is.date=end.is.date,

end.oos.date=end.oos.date, refit.every=refit.every, rolling=rolling,

include.bh=include.bh, FUN=Sortino)

access the results

totret <- res$totret

actret <- res$actret

15

rfret <- res$rfret

dates <- res$dates

compute the Sharpe ratios

SR.bh <- Sharpe(totret-rfret)*sqrt(12)

SR.ma <- Sharpe(actret-rfret)*sqrt(12)

plot the cumulative returns

cumret.bh <- cumprod(1+totret)

cumret.ma <- cumprod(1+actret)

data.zoo <- zoo(log(cbind(cumret.bh, cumret.ma)), order.by=dates)

names(data.zoo) <- c("BH","MA")

plot(data.zoo, plot.type="single", col=c("black","red"),

ylab="Log cumulative returns", xlab="")

legend("topleft", legend=c("BH","MA"), col=c("black","red"), lty=1, bty = "n")

7.3 Outperformance test

Note that function back.test finds (and ranks) the best trading strategies in a back test with-

out testing whether the best strategy in a back test outperforms its passive counterpart. We

remind the reader that, due to data-mining bias, the performance of the best trading strategy

in a back test is biased upward, whereas the p-value of the standard test of outperformance is

biased downward. Currently, package matiming has no functions to correct the data-mining

bias in the performance of the best rule in a back test.

Function forward.test simulates the returns to the out-of-sample trading strategy with-

out testing whether the out-of-sample strategy outperforms its passive counterpart. To con-

duct the outperformance test, function outperformance.test is used. Specifically, function

outperformance.test tests whether the moving average strategy outperforms its passive coun-

terpart. All tests are based on using a bootstrap method. The usage of this function:

outperformance.test(results, digits=3, to.annual=sqrt(12),

type=c("ordinary", "block", "stationary"),

bLen=5, R=1000, automatic=FALSE)

where

results : the results returned by function forward.test or back.test

digits : defines the number of digits after the decimal delimiter to use in reporting the per-

formance of the moving average strategy

to.annual : a coefficient used to annualize the performance measure. For example, when the

16

performance is measured using either Sharpe or Sortino, use sqrt(252) and sqrt(12)

when the returns are at the daily and monthly frequency respectively

type : determines the type of the bootstrap method. The default type is “ordinary” (the

method of Efron (1979)). The two other types are “block” (the method of Künsch (1989))

and “stationary” (the method of Politis and Romano (1994))

bLen : a scalar that specifies the block length in the block-bootstrap method

R : a scalar that specifies the number of bootstrap replicates

automatic : a logical variable that specifies whether to compute the optimal block length for

the block-bootstrap and stationary bootstrap. If automatic=TRUE, the function computes

the optimal block length using the method by Patton, Politis, and White (2009).

The goal of this function is to test the following null hypothesis:

H0 : ∆ = PMMA − PMBH ≤ 0,

where PMMA and PMBH are the performances of the moving average and buy-and-hold

strategies respectively. In words, the null hypothesis is that the performance of the moving

average strategy is not better than the performance of the buy-and-hold strategy. If one can

reject this null hypothesis, then the performance of the moving average strategy is statistically

significantly better than the performance of its passive counterpart. Note that even though one

can conduct the outperformance test for the best trading strategy in a back test, in this case

the p-value of the test in unreliable; function outperformance.test should be used mainly to

test whether the out-of-sample trading strategy outperforms its passive counterpart.

This function returns the p-value of the test.

Below is an example of a program that simulates the out-of-sample returns to a set of MAC

rules (this part is identical to that in the programs above) and then tests the outperformance

hypothesis.

> rm(list=ls(all=TRUE))

> library(matiming)

> library(zoo)

17

> library(xtable)

> # access the data

> data <- sp500.monthly

> dates <- index(data)

> data <- coredata(data)

> capret <- data[,"CAP"]

> totret <- data[,"TOT"]

> rfret <- data[,"RF"]

> # simulate the trading strategies

> tc <- 0.0025

> fast <- 1:8

> slow <- 2:18

> shorts <- F

> res1 <- sim.mac.strategy(totret=totret, rfret=rfret, dates=dates,

+ capret=capret, tc=tc, shorts=shorts, fast=fast,

+ slow=slow, FUN=SMA)

> res2 <- sim.mom.strategy(totret=totret, rfret=rfret, dates=dates,

+ capret=capret, tc=tc, shorts=shorts, winsize=slow)

> results <- sim.results.merge(res1, res2)

> # simulate the out-of-sample trading strategy using the rolling in-sample window

> start.date <- as.Date("1920-01-01", format="%Y-%m-%d")

> end.is.date <- as.Date("1949-12-31", format="%Y-%m-%d")

> end.oos.date <- as.Date("2015-12-31", format="%Y-%m-%d")

> refit.every <- 1

> rolling <- TRUE

> res <- forward.test(results, start.date, end.is.date, end.oos.date,

+ refit.every=refit.every, rolling=rolling, FUN=Sharpe)

> pval <- outperformance.test(res, type="block")

==

18

Performance of the BH strategy = 0.504

Performance of the MA strategy = 0.574

==

The following null hypothesis is tested:

The performance of MA strategy <= the performance of BH strategy

Bootstrap method: block

Block length: 5

Number of simulations: 1000

P-value of the null hypotheis = 0.240

8 Function that report the descriptive statistics of trading rules

and plot the results

8.1 Descriptive statistics, cumulative returns, and drawdowns

Function best.is.strategies

Function best.is.strategies reports the best trading strategies in a back-test. The usage

of this function:

best.is.strategies(results, to.annual=sqrt(12), plot.results=FALSE)

where

results : the results returned by function back.test

to.annual : a coefficient used to annualize the performance measure. For example, when the

performance is measured using either Sharpe or Sortino, use sqrt(252) and sqrt(12)

when the returns are at the daily and monthly frequency respectively

plot.results : a logical variable that specifies whether to produce the plot of cumulative

returns to the best trading strategies in a back test.

19

The function returns an object of class data.frame containing three columns: Rank, Rule,

and Performance.

An example of using this function is provided in the description of function back.test.

Below is a fragment of the program that performs the back tests of a set of trading rules and

uses function best.is.strategies to plot the results and print the table with the best trading

rules:

res <- back.test(results, start.date=start.date, end.date=end.date,

n.first=n.first, include.bh=include.bh, FUN=Sortino)

report and plot the results

df <- best.is.strategies(res, to.annual=sqrt(12), plot.results=TRUE)

xtab <- xtable(df, digits=3)

print(xtab, include.rownames=FALSE)

Function descriptive.statistics

Function descriptive.statistics computes the summary statistics of the moving average

trading strategy and the corresponding buy-and-hold strategy. This function also conducts

the test of the outperformance hypothesis. If required, this function plots the cumulative

returns and running drawdowns to the moving average trading strategy and the corresponding

buy-and-hold strategy. The usage of this function:

descriptive.statistics(results, nobs.a.year = 12, to.annual=sqrt(12),

type=c("ordinary", "block", "stationary"),

bLen=5, R=1000, automatic=FALSE, plot.results=FALSE)

where

results : the results returned by function forward.test or back.test

nobs.a.year : a scalar that defines the number of observations a year. For example, for

monthly (daily) data the number of observations a year equals 12 (252)

to.annual : a coefficient used to annualize the performance measure. For example, when the

performance is measured using either Sharpe or Sortino, use sqrt(252) and sqrt(12)

when the returns are at the daily and monthly frequency respectively. If the performance

measure is Excret, use 12

20

type : determines the type of the bootstrap method. The default type is “ordinary” (the

method of Efron (1979)). The two other types are “block” (the method of Künsch (1989))

and “stationary” (the method of Politis and Romano (1994))

bLen : a scalar that specifies the block length in the block-bootstrap method

R : a scalar that specifies the number of bootstrap replicates

automatic : a logical variable that specifies whether to compute the optimal block length for

the block-bootstrap and stationary bootstrap. If automatic=TRUE, the function computes

the optimal block length using the method by Patton et al. (2009).

plot.results : a logical variable that specifies whether to produce the plot of cumulative

returns and running drawdowns to the moving average strategy and the buy-and-hold

strategy

If the results are returned by function back.test, the function computes the descriptive

statistics of the best trading strategy in a back test. Otherwise, the function computes the

descriptive statistics of the out-of-sample trading strategy.

This function returns an object of class data.frame containing two columns: BH and MA.

The first column contains the summary statistics for the Buy-and-Hold strategy, the second

column contains the summary statistics for the Moving Average strategy. Each column contains

the following rows:

Mean returns % : annualized mean returns

Std. deviation % : annualized standard deviation

Minimum return % : minimum return

Maximum return % : maximum return

Skewness : skewness of return distribution

Kurtosis : kurtosis of return distribution

Average drawdown % : average drawdown

Average max drawdown % : average of the 10 largest drawdowns

21

Maximum drawdown % : maximum drawdown

Performance : Performance measure

P-value : P-value of the test of outperformance

Rolling 5-year Win % : Probability that the moving average strategy outperforms its pas-

sive counterpart over a 5-year horizon

Rolling 10-year Win % : Probability that the moving average strategy outperforms its pas-

sive counterpart over a 10-year horizon

The outperformance test is performed in a similar manner as in function outperformance.test.

An example of using this function is provided in the description of function forward.test.

Below is a fragment of the program that performs the forward tests of a set of trading rules

and uses function descriptive.statistics to plot the results and print the table with the

descriptive statistics:

res <- forward.test(results, start.date=start.date, end.is.date=end.is.date,

end.oos.date=end.oos.date, refit.every=refit.every, rolling=rolling,

include.bh=include.bh, FUN=Sortino)

report the descriptive statistics, the p-value of the test, and plot the results

df <- descriptive.statistics(res, plot.results = TRUE)

xtab <- xtable(df, digits=2)

print(xtab)

8.2 Rolling outperformance plots

The outperformance generated by a moving average trading strategy is very non-uniform over

time. Therefore it is very useful to analyze the graph of rolling N-year outperformance. For

this purpose the package provides two functions described below.

Function is.outperformance.plot

Function is.outperformance.plot plots the trading strategies rolling outperformance.

The usage of this function:

is.outperformance.plot(results, start.date, split.date, end.date, FUN=Sharpe)

where

22

results : the results of the back-test or simulation of a trading strategy or multiple trading

strategies. The former is the result returned by function back.test. The latter is the re-

sult returned by function sim.mom.strategy, sim.mac.strategy, sim.cdir.strategy,

sim.macd.strategy, sim.results.merge

start.date : the start of the first rolling period

split.date : the end of the first rolling period

end.date : the end of the total period

FUN : the function that computes the performance of a trading strategy. The function FUN is

either Excret, Sharpe, or Sortino. The function FUN is not used when results are the

results of the back-test.

The program below simulates the returns to the P-SMA(10) strategy and plots its rolling

10-year outperformance:

> rm(list=ls(all=TRUE))

> library(matiming)

> library(zoo)

> # access the data

> data <- sp500.monthly

> dates <- index(data)

> data <- coredata(data)

> capret <- data[,"CAP"]

> totret <- data[,"TOT"]

> rfret <- data[,"RF"]

> # simulate the SMA(10) strategy

> tc <- 0.0025

> fast <- 1

> slow <- 10

> shorts <- F

> results <- sim.mac.strategy(totret=totret, rfret=rfret, dates=dates,

23

+ capret=capret, tc=tc, shorts=shorts, fast=fast,

+ slow=slow, FUN=SMA)

> # plot the rolling outperformance

> start.date <- as.Date("1920-01-01", format="%Y-%m-%d")

> split.date <- as.Date("1929-12-31", format="%Y-%m-%d")

> end.date <- as.Date("2015-12-31", format="%Y-%m-%d")

> is.outperformance.plot(results, start.date=start.date, split.date=split.date,

+ end.date=end.date, FUN=Sharpe)

1940 1960 1980 2000

−
0.

1
0.

0
0.

1
0.

2

O
ut

pe
rf

or
m

an
ce

Rolling 10 − year outperformance

P−SMA(10)

Function oos.outperformance.plot

Function oos.outperformance.plot plots the rolling outperformance of the out-of-sample

trading strategy.

The usage of this function:

oos.outperformance.plot(results, start.date, split.date, end.date)

where

results : the results returned by function forward.test.

24

start.date : the start of the first rolling period

split.date : the end of the first rolling period

end.date : the end of the total period

The program below simulates the returns to a set of MAC and MOM rules, merges the

results of simulations, simulates returns to the out-of-sample trading strategy and plots the

rolling 5-year outperformance.

> rm(list=ls(all=TRUE))

> library(matiming)

> library(zoo)

> data <- sp500.monthly

> dates <- index(data)

> data <- coredata(data)

> capret <- data[,"CAP"]

> totret <- data[,"TOT"]

> rfret <- data[,"RF"]

> tc <- 0.0025

> fast <- 1:9

> slow <- 2:18

> res.mac <- sim.mac.strategy(totret=totret, rfret=rfret, dates=dates,

+ capret=capret, tc=tc, fast=fast, slow=slow, FUN=SMA)

> res.mom <- sim.mom.strategy(totret=totret, rfret=rfret, dates=dates,

+ capret=capret, tc=tc, winsize=slow)

> results <- sim.results.merge(res.mac, res.mom)

> start.date <- as.Date("1930-01-01", format="%Y-%m-%d")

> end.is.date <- as.Date("1949-12-31", format="%Y-%m-%d")

> end.oos.date <- as.Date("2015-12-31", format="%Y-%m-%d")

> res <- forward.test(results, start.date=start.date, end.is.date=end.is.date,

+ end.oos.date=end.oos.date)

> # plot the rolling outperformance

25

> start.date <- as.Date("1950-01-01", format="%Y-%m-%d")

> split.date <- as.Date("1954-12-31", format="%Y-%m-%d")

> end.date <- as.Date("2015-12-31", format="%Y-%m-%d")

> oos.outperformance.plot(res, start.date=start.date, split.date=split.date,

+ end.date=end.date)

1960 1970 1980 1990 2000 2010

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

O
ut

pe
rf

or
m

an
ce

Rolling 5 − year outperformance

26

References

Efron, B. (1979). “Bootstrap Methods: Another Look at the Jackknife”, Annals of Statistics,

7 (1), 1–26.

Ehlers, J. F. and Way, R. (2010). “Zero Lag (Well, Almost)”, Technical Analysis of Stocks and

Commodities, 28 (12), 30–35.

Hull, A. (2005). “How to Reduce Lag in a Moving Average”, http://www.alanhull.com/

hull-moving-average. [Online; accessed 7-October-2016].

Künsch, H. R. (1989). “The Jacknife and the Bootstrap for General Stationary Observations”,

Annals of Statistics, 17 (3), 1217–1241.

Mulloy, P. G. (1994). “Smoothing Data With Faster Moving Averages”, Technical Analysis of

Stocks and Commodities, 12 (1), 11–19.

Patton, A., Politis, D. N., and White, H. (2009). “Correction to “Automatic Block-Length Se-

lection for the Dependent Bootstrap” by D. Politis and H. White”, Econometric Reviews,

28 (4), 372–375.

Politis, D. N. and Romano, J. P. (1994). “The Stationary Bootstrap”, Journal of the American

Statistical Association, 89 (428), 1303–1313.

27

